XL-HeadTags: Leveraging Multimodal Retrieval Augmentation for the Multilingual Generation of News Headlines and Tags

Faisal Tareque Shohan^{1*}, Mir Tafseer Nayeem^{2*}, Samsul Islam¹, Abu Ubaida Akash³, Shafiq Joty^{4,5}

¹Ahsanullah University of Science and Technology
 ²University of Alberta
 ³Université de Sherbrooke
 ⁴Salesforce Research
 ⁵Nanyang Technological University

*[Equal Contribution]



News Headline and Tags

Headline

- Providing brief context
- Catching readers attention
- Enhancing Search engine optimization

Tags

- Semantic Markers
- Dynamically connects related articles
- Provide navigational aids

Headline and Tags Generation

Headline Generation

- Special case of abstractive Summarization
- Do no often maintain grammatical structure
- Need to be brief and engaging
- Highly abstractive in nature

Tags Generation

- Similar to key-phrase generation
- Focuses on broader overview
- ✤ Are often absent in the article
- Necessary for connecting to related article

Headline and Tags Generation

Motivation

- ✤ Headline and Tags are extreme compression of the article
- Generating headline and tags in a multilingual context
- * News article tags generation in **unexplored** in existing literature
- Simultaneous headline and tags generation are not often modeled together
- Limited context window of pretrained models hinder NLG task performance on long documents, leading to subpar results

XL-HeadTags Task

What is XL-HeadTags Task?

- Simultaneously generate **Headline** and **Tags** in a **unified** learning framework
- Generate both controlled and unrestricted number of tags

XL-HeadTags Task

Research Questions?

- Can the task of simultaneous generation of headline and task be modelled and learned?
- Can improved content selection strategies mitigate the constraints imposed by limited context window of pre-trained language models?
- How can multimodal auxiliary information (e.g., images, captions) be utilized as query to effectively retrieve the most salient information from lengthy articles?

Our Contributions

XL-HeadTags Task

- Simultaneous generation of both headline and tags through instruction tuning
- Soth **controlled** and **unrestricted** tags generation through natural language instruction

MultiRAGen

Present new content selection approach utilizing multimodal auxiliary information

Our Contributions

□ Multilingual Tools

Developed multilingual tools by accumulating open-source resources

- Multilingual Rouge Scorer Leveraging multilingual BPE tokenizer
- Multilingual Sentence Tokenizer Covering 41 Languages
- Multilingual Stemmer Supports 18 Languages

Our Contributions

Tags Evaluation Metrics

- Introduce Tags evaluation metrics to evaluate both
 - ✓ Controlled Tags generation
 - ✓ Unrestricted Tags generation

XL-HeadTags Dataset

- News articles with **multimodal** (e.g., images, captions) auxiliary information
- Covering 20 languages across 6 diverse language families

- > M3LS and XL-Sum are primary data source
- > Both share **BBC** news are source
- > Minimal Distributional and Structural changes are expected

M3LS – Multilingual Multimodal Summarization Dataset

- Contains Headline, Article, Summary, Images, Captions, Tags, News links
- Auxiliary information's (e.g., images, captions) were utilized for retrieval augmentation framework

Dataset

XL-Sum – Multilingual Abstractive Summarization Dataset

- Contains Headline, Article, Summary, News links
- * Arabic, Turkish and Persian news articles were selected
- Images, Captions and Tags were **absent**
- Missing information's were crawled utilizing provided URL's

Dataset

- Total 415k data samples
- ✤ Average article
 - ✤ Words 902
 - Number of sentences 27.7
 - ***** Tokens 1632

- Average headline to article compression ratio
 98.88%
- Average 3.47 tags per Article, where 44.64% tags are absent in article

* Most pre-trained language models have a context window of 512

MultiRAGen – Multimodal Retrieval Augmented Generation

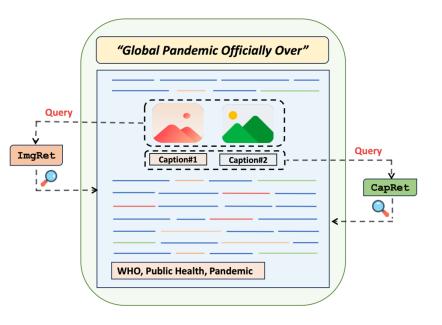
Our Approach MultiRAGen has two main component

- ✓ Multimodal Retrievers
- ✓ Instruction Tuning

MultiRAGen

Multimodal Retrievers

- Tokenize article into sentences
- Use Images and Captions as queries to compute semantic similarity with sentences
 - Utilizing Multilingual CLIP-ViT-B32 that maps texts and images to a shared dense vector space
- Pick top-K sentences based of similarity scores
- Reorder top-K sentences to their original sequence in the article to preserve the narrative flow



□ Multimodal Retrievers – Handling multiple Images and Captions

- > Each Image and Caption are treated as **distinct query** entity
- Scores from each query are aggregated
- Greedy approach is used to pick top K sentences

MultiRAGen

□ Instruction Tuning

- Task specific prefixes to guide the model
- ✤ Two instruction variations are introduced

Determine optimal number of tags to generate

Instruction for Unrestricted Generation

Input \rightarrow Generate Headline and Tag Words: <u>Selected Content</u>.

Output \rightarrow Headline is: <u>Headline</u>. Tag words are: T_1, T_2, \dots, T_o .

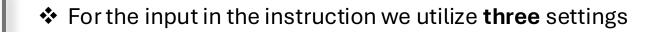
Instructed to generate specified number of tags

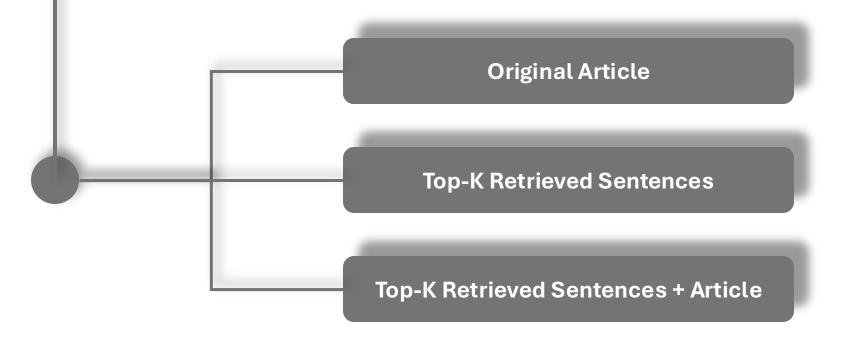
Instruction for Controlled Generation

Input \rightarrow Generate Headline and \mathcal{N} Tag Words: <u>Selected Content</u>.

MultiRAGen

□ Instruction Tuning – Selected Content

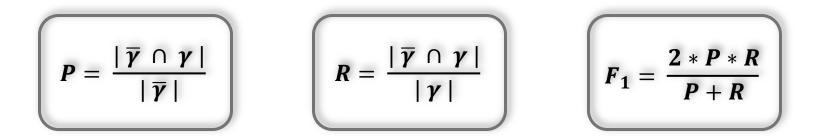




Tags Evaluation

C Existing key-phrase evaluation metrics

- Precision (P), Recall (R), F-measure (F₁) are commonly used to measure predictive performance
- ✤ If $\overline{\gamma} = \{\overline{\gamma}_1, \overline{\gamma}_2, \dots, \overline{\gamma}_m\}$ denotes generated key-phrases and γ denotes ground truth key-phrases



Tags Evaluation

Proposed Tags evaluation metrics

Inspired by the work of Yuan et al. (2020), we propose three metrics

Unrestricted Tags generation

- ♦ $F_1@M$, where $M = |\overline{\gamma}|$. *M* varies with article
 - Reflecting model's decision on the number of tags

Controlled Tags generation

- ✤ F₁@K, where K is user defined
 - ✤ Here we defined *K* as 3 and 5
- **♦** *F*₁@*O*, where *O* = | γ |.
 - Number of tags in ground truth

🛛 Data

Introduce Prefix Mixture Strategy

- > Prefix mixture approach **during training** to improve the generalizability
- > Enabling it to generate **both** controlled and unrestricted tags
- > We maintain a **70:30** allocation ratio
- > 70% data for **controlled** tag word generation
- > 30% data for unrestricted tag words generation

Data Split

Split into train (95%), validation (1%) and test (%) sets for experiments

Models – Baselines

- We finetune following pre-trained models
 - \circ mT5-base
 - \circ mT0-base
 - Flan-T5-large
- Selected Content is Original Article
- LEAD-1 and EXT-ORACLE represents extractive baselines

Models – Baselines – LLM's

- Gemini-Pro and Mixtral models for evaluating their efficacy in XL-HeadTags task
- Zero-shot prompting conditions
- Sampling **50** instances from each language

Models – MultiRAGen

- Two separate multimodal retrievers
 - ImgRet Visual Retrievers (Images)
 - **CapRet** Textual Retrievers (Captions)
- Number of sentences to be retrieved is determined by K
 - $\circ~$ 5, 10 and 15 are explored as the value of K
- Two Selected Content approaches
 - Top-K Retrieved Sentences
 - Top-K Retrieved Sentences + Article

Results - Headline

		Selected Content	Models	Rouge-1	Rouge-2	Rouge-L	BLEU	Meteor	LR (↓)	BERT Score
		۵)	mT5	37.86	17.20	33.53	12.95	25.55	0.84	75.79
Baselines		Article	mT0	38.33	17.66	33.90	14.64	26.44	0.94	75.83
			Flan-T5	31.46	12.73	28.15	8.75	24.61	0.71	70.87
MultiRAGen	Text (Caption)	Top-K Retrieved + Article	mT5 <i>(K=10)</i>	39.04	18.20	34.51	14.03	26.86	0.87	76.23
			mT0 <i>(K=10)</i>	39.13	18.35	34.61	14.29	27.24	0.88	76.21
			Flan-T5 <i>(K=10)</i>	31.65	12.80	28.44	8.64	24.59	0.70	70.89
	Visual (Image)		mT5 <i>(K=10)</i>	38.94	18.17	34.44	14.08	26.87	0.87	76.18
			mT0 <i>(K=10)</i>	39.16	18.33	34.61	14.27	27.11	0.88	76.22
			Flan-T5 <i>(K=10)</i>	31.55	12.82	28.38	8.65	24.58	0.69	70.90

Results - Tags

_		Selected Content	Models	Rouge-1	Rouge-2	Rouge-L	BLEU
		0)	mT5	45.01	39.82	44.67	46.79
Baselines		Article	mT0	51.58	44.94	52.50	54.39
		٩	Flan-T5	30.76	26.3	31.86	33.40
MultiRAGen	Text (Caption)	Retrieved	mT5 <i>(K=10)</i>	53.08	47.00	54.00	56.24
			mT0 <i>(K=10)</i>	53.88	47.95	55.29	57.49
			Flan-T5 <i>(K=10)</i>	31.18	26.65	32.16	33.77
	Visual (Image)	-K Re	mT5 <i>(K=10)</i>	53.62	47.57	54.76	56.95
		Top-K	mT0 <i>(K=10)</i>	53.79	47.69	55.00	57.12
	> E		Flan-T5 <i>(K=10)</i>	30.74	26.25	31.40	33.21

Discussion

- Both Textual and Visual Retrieved Content Selections help models outperform their respective baselines
- Combining **retrieved sentences with article** is the superior strategy for headline
- While using solely retrieved sentences is more effective for tags generation
- The disparity indicates that
 - Tags, being concise, thrive on **focused inputs**
 - While headlines require **broader context**

Investigate the potential benefits of integrating both image and caption data for simultaneous retrieval process

Thank You!