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3Université de Sherbrooke 
4Salesforce Research 
5Nanyang Technological University 

*[Equal Contribution]



News Headline and Tags

❑Headline

❖ Providing brief context
❖ Catching readers attention
❖ Enhancing Search engine optimization  

❑Tags

❖ Semantic Markers
❖ Dynamically connects related articles
❖ Provide navigational aids  



Headline and Tags Generation

❑Headline Generation

❖ Special case of abstractive Summarization
❖ Do no often maintain grammatical structure
❖ Need to be brief and engaging
❖ Highly abstractive in nature

❑Tags Generation

❖ Similar to key-phrase generation
❖ Focuses on broader overview
❖ Are often absent in the article
❖ Necessary for connecting to related article  



Headline and Tags Generation

❑Motivation

❖ Headline and Tags are extreme compression of the article

❖ Generating headline and tags in a multilingual context

❖ News article tags generation in unexplored in existing literature

❖ Simultaneous headline and tags generation are not often modeled together

❖ Limited context window of pretrained models hinder NLG task performance on long documents, 

leading to subpar results



XL-HeadTags Task

❑What is XL-HeadTags Task?

❖ Simultaneously generate Headline and Tags in a unified learning framework

❖ Generate both controlled and unrestricted number of tags



XL-HeadTags Task

❑Research Questions?

❖ Can the task of simultaneous generation of headline and task be modelled and learned?

❖ Can improved content selection strategies mitigate the constraints imposed by limited context 

window of pre-trained language models?

❖ How can multimodal auxiliary information (e.g., images, captions) be utilized as query to  

effectively retrieve the most salient information from lengthy articles?



Our Contributions

❑XL-HeadTags Task

❖ Simultaneous generation of both headline and tags through instruction tuning

❖ Both controlled and unrestricted tags generation through natural language instruction

❑MultiRAGen

❖ Present new content selection approach utilizing multimodal auxiliary information



Our Contributions

❑Multilingual Tools
Developed multilingual tools by accumulating open-source resources

❖ Multilingual Rouge Scorer – Leveraging multilingual BPE tokenizer

❖ Multilingual Sentence Tokenizer – Covering 41 Languages

❖ Multilingual Stemmer – Supports 18 Languages



Our Contributions

❑Tags Evaluation Metrics 

❖ Introduce Tags evaluation metrics to evaluate both 

✓ Controlled Tags generation

✓ Unrestricted Tags generation

❑XL-HeadTags Dataset

❖ News articles with multimodal (e.g., images, captions) auxiliary information
❖ Covering 20 languages across 6 diverse language families



Dataset

➢ M3LS and XL-Sum are primary data source

➢ Both share BBC news are source

➢ Minimal Distributional and Structural changes are expected

❑M3LS – Multilingual Multimodal Summarization Dataset
❖ Contains Headline, Article, Summary, Images, Captions, Tags, News links

❖ Auxiliary information's (e.g., images, captions) were utilized for retrieval 

augmentation framework



Dataset

❑XL-Sum – Multilingual Abstractive Summarization Dataset
❖ Contains Headline, Article, Summary, News links

❖ Arabic, Turkish and Persian news articles were selected

❖ Images, Captions and Tags were absent

❖ Missing information's were crawled utilizing provided URL's 



Dataset

❑Statistics
❖ Total 415k data samples

❖ Average article

❖ Words – 902

❖ Number of sentences – 27.7

❖ Tokens – 1632

❖ Average headline to article compression ratio 

98.88%

❖ Average 3.47 tags per Article, where 44.64% tags 

are absent in article

* Most pre-trained language models have a context window of 512



MultiRAGen – Multimodal Retrieval Augmented Generation

Our Approach MultiRAGen has two main component
 

✓ Multimodal Retrievers
✓ Instruction Tuning  



MultiRAGen

❑Multimodal Retrievers

➢ Tokenize article into sentences

➢ Use Images and Captions as queries to compute semantic 

similarity with sentences

o Utilizing Multilingual CLIP-ViT-B32 that maps texts and 

images to a shared dense vector space

➢ Pick top-K sentences based of similarity scores

➢ Reorder top-K sentences to their original sequence in the 

article to preserve the narrative flow



MultiRAGen

❑Multimodal Retrievers – Handling multiple Images and Captions

➢ Each Image and Caption are treated as distinct query entity

➢ Scores from each query are aggregated

➢ Greedy approach is used to pick top K sentences



MultiRAGen

❑ Instruction Tuning
❖ Task specific prefixes to guide the model 

❖ Two instruction variations are introduced

Determine optimal number of tags to generate Instructed to generate specified number of tags



MultiRAGen

❑ Instruction Tuning – Selected Content
❖ For the input in the instruction we utilize three settings

Original Article

Top-K Retrieved Sentences

Top-K Retrieved Sentences + Article



Tags Evaluation

❑ Existing key-phrase evaluation metrics
❖ Precision (P), Recall (R), F-measure (F1) are commonly used to measure predictive 

performance

❖ If  ഥ𝜸 = {ഥ𝜸𝟏, ഥ𝜸𝟐, . . . , ഥ𝜸𝒎} denotes generated key-phrases and 𝜸 denotes ground 

truth key-phrases

𝑷 =
| ഥ𝜸  ∩  𝜸 |

| ഥ𝜸 |
𝑹 =

| ഥ𝜸  ∩  𝜸 |

| 𝜸 |
𝑭𝟏 =

𝟐 ∗ 𝑷 ∗ 𝑹

𝑷 + 𝑹



Tags Evaluation

❑ Proposed Tags evaluation metrics
Inspired by the work of Yuan et al. (2020), we propose three metrics

Unrestricted Tags generation Controlled Tags generation

❖ F1@K, where K is user defined

❖ Here we defined K as 3 and 5

❖ F1@O, where O = | 𝛾 |. 

❖ Number of tags in ground truth

❖ F1@M, where M = | ഥ𝜸 |. M varies with article

❖ Reflecting model’s decision on the 

number of tags 



Experiments

❑ Data

❖ Introduce Prefix Mixture Strategy

➢ Prefix mixture approach during training to improve the generalizability

➢ Enabling it to generate both controlled and unrestricted tags

➢ We maintain a 70:30 allocation ratio

➢ 70% data for controlled tag word generation

➢ 30% data for unrestricted tag words generation

❖ Data Split

➢ Split into train (95%), validation (1%) and test (%) sets for experiments



Experiments

❑Models – Baselines 

❖ We finetune following pre-trained models

o mT5-base

o mT0-base

o Flan-T5-large

❖ Selected Content is Original Article

❖ LEAD-1 and EXT-ORACLE represents extractive baselines



Experiments

❑Models – Baselines – LLM’s 

❖ Gemini-Pro and Mixtral models for evaluating their efficacy in XL-HeadTags task

❖ Zero-shot prompting conditions

❖ Sampling 50 instances from each language



Experiments

❑Models – MultiRAGen

❖ Two separate multimodal retrievers

o ImgRet – Visual Retrievers (Images)

o CapRet – Textual Retrievers (Captions)

❖ Number of sentences to be retrieved is determined by K

o 5, 10 and 15 are explored as the value of K

❖ Two Selected Content approaches

o Top-K Retrieved Sentences

o Top-K Retrieved Sentences + Article  



Results - Headline

Selected
Content Models Rouge-1 Rouge-2 Rouge-L BLEU Meteor LR (↓) BERT 

Score

Baselines
A

rt
ic

le
mT5 37.86 17.20 33.53 12.95 25.55 0.84 75.79

mT0 38.33 17.66 33.90 14.64 26.44 0.94 75.83

Flan-T5 31.46 12.73 28.15 8.75 24.61 0.71 70.87
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mT5 (K=10) 39.04 18.20 34.51 14.03 26.86 0.87 76.23

mT0 (K=10) 39.13 18.35 34.61 14.29 27.24 0.88 76.21

Flan-T5 (K=10) 31.65 12.80 28.44 8.64 24.59 0.70 70.89

V
is

ua
l 

(I
m

ag
e)

mT5 (K=10) 38.94 18.17 34.44 14.08 26.87 0.87 76.18

mT0 (K=10) 39.16 18.33 34.61 14.27 27.11 0.88 76.22

Flan-T5 (K=10) 31.55 12.82 28.38 8.65 24.58 0.69 70.90



Results - Tags

Selected
Content Models Rouge-1 Rouge-2 Rouge-L BLEU

Baselines

A
rt

ic
le

mT5 45.01 39.82 44.67 46.79

mT0 51.58 44.94 52.50 54.39

Flan-T5 30.76 26.3 31.86 33.40

M
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R
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d

mT5 (K=10) 53.08 47.00 54.00 56.24

mT0 (K=10) 53.88 47.95 55.29 57.49

Flan-T5 (K=10) 31.18 26.65 32.16 33.77

V
is

ua
l 

(I
m

ag
e)

mT5 (K=10) 53.62 47.57 54.76 56.95

mT0 (K=10) 53.79 47.69 55.00 57.12

Flan-T5 (K=10) 30.74 26.25 31.40 33.21



Discussion

❖ Both Textual and Visual Retrieved Content Selections help models outperform their 

respective baselines

❖ Combining retrieved sentences with article is the superior strategy for headline

❖ While using solely retrieved sentences is more effective for tags generation

❖ The disparity indicates that

o Tags, being concise, thrive on focused inputs

o While headlines require broader context



Future Works

❖ Investigate the potential benefits of integrating both image and caption data for simultaneous 

retrieval process



Thank You!
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